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Abstract –  

Construction environments are often densely 
populated with multiple resources (e.g., workers, 
equipment, and materials). As an increasing number 
of mobile robots are expected to coexist and interact 
with humans at close proximity, it is necessary that 
these robots are capable of not only avoiding collisions 
with people but also not disturbing human work and 
deteriorating human comfort. Failing to maintain a 
proper social space can lead to fatal accidents and 
inefficiency. To accommodate this need, this study 
aims to develop a social navigation model that enables 
robots to navigate in a contextually compliant manner. 
We created a simulation environment where robot 
agents can learn socially and contextually aware 
policies using reinforcement learning. The results 
showed that the agent was able to secure the 
respective minimum separation distance for different 
types of workers while achieving similar overall 
performance in contrast to baseline models which 
often violated the work-related proxemic 
considerations. This finding will contribute to 
building future construction mobile robots with social 
intelligence which are capable of understanding the 
context of the workplace and adapting to appropriate 
behaviors accordingly. 
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1 Introduction 
Construction environments are often densely 

populated with a variety of resources such as workers, 
equipment, and materials, and they are usually operated 
in close proximity. As a result of the environment's 
congested and dynamic nature, the construction industry 
suffers from contact collisions between workers and 
equipment [1]. To prevent high traffic accidents, it has 

been essential to maintain a certain distance from one 
another.  

As a growing number of mobile robotics engaging in 
non-permanent construction tasks such as reality capture 
[2,3], safety surveillance [4], and environment monitor 
(e.g., illuminance measurement) [5] are developed and 
expected to be deployed in near future, the introduction 
of mobile robots will bring new safety risks to workers 
who are in vicinity to the robot trajectory. During 
operations, robots will encounter a number of workers in 
different situations, and their movement and the resulting 
interaction with people can create discomfort and safety 
threats, causing rejection [6].  

Thus, to deploy autonomous mobile robots in 
construction sites, safe and efficient navigation that 
produces socially acceptable robot behaviors in the 
context of construction sites is a vital precondition. This 
means that these robots are capable of moving through 
crowds of people while preserving a minimum distance 
from the co-existing people. This brings the notion of 
social navigation, which accounts for social conventions 
such as comfort, naturalness, and sociability, in addition 
to traditional navigation objectives such as obstacle 
avoidance and task completion. Due to its importance, 
robot mobility in a socially compliant manner has been 
an active area of research in various domains [7,8].  

However, one limitation of the existing socially 
aware navigation models is the lack of understanding of 
individuals’ different proxemic requirement based on 
their work context. Previous research studies treated each 
individual equally in their models, assuming no 
difference in proxemic requirements or preferences 
among different groups of pedestrians [9–11]. In 
construction environment, nevertheless, individual 
pedestrian workers possess unique proxemic 
considerations based on their work-related contexts. 
Each worker requires different personal spaces 
depending on his operational status and space constraints. 
For example, if a worker is carrying heavy materials 
where various safety hazards are presented, he needs a 
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larger separation distance from others to feel safe and 
uninterrupted. To this end, robots should exhibit 
appropriate proxemic behaviors with respect to these 
different needs of workers in order to be seamlessly 
integrated into the construction environment. 

Our study aims to develop a context-appropriate 
social navigation (CASN) algorithm sensitive to different 
types of pedestrian workers’ proxemic needs in 
construction sites. We used different reinforcement 
learning (RL) algorithms on the CASN model and 
evaluated them against baseline models. The preliminary 
results demonstrated that the proposed model can 
navigate in crowds with appropriate social etiquette 
comparable to state-of-the-art methods with some 
limitations. This finding will contribute to building future 
construction mobile robots with social intelligence 
capable of understanding the workplace context and 
taking socially and contextually appropriate behaviors 
accordingly.  

2 Background  

2.1 Social Spaces and Proximity 
Considerations in Construction 

For navigation tasks in a human-populated 
environment, mobile robots’ behaviors must be 
acceptable by the humans who share the same space with 
robots. One paramount aspect of such spatial behaviors 
is that it does not intrude on people’s social space, 
including personal space and activity space as humans 
perceive [12].  

The notion of personal space is first introduced and 
delineated in the proxemic theory by Hall [13]. 
Proxemics is the study of spatial distances that 
individuals maintain in various social and interpersonal 
situations, and it is used to define interaction strategies. 
According to Hall, people can perceive and manage their 
personal space from others and respect others’ space in a 
similar manner. Similar to personal space, actions 
performed by humans constitute activity space. Other 
people maintain this space to avoid disturbing the activity. 

These social spaces, such as personal or activity 
spaces, often depend on environmental or cultural factors. 
Thus, the preferred social space distance is subject to be 
changed based on the context [14]. For example, if the 
potential threat is high, personal space distance tends to 
get larger. Understanding and respecting this personal 
space is vital in terms of safety assurance. When personal 
space interferes, people feel discomfort, and it increases 
physical safety risks.  

In the construction domain, which are often 
characterized as unstructured and cluttered, respecting 
proxemics, or the minimum distance from other workers 
is even more critical. Various construction activities are 

concurrently operated in proximity, and both workers and 
equipment constantly change their positions in the 
construction job sites. Consequently, there are many 
direct and indirect safety risks of shared spaces with 
unmanned vehicles in proximity [15–17]. Maintaining 
the relevant separation distance from workers, therefore, 
is critical for mobile robots to assure both physical and 
psychological safety.  

For example, when autonomous robots are integrated 
into the construction sites, any robot behavior that 
impinges on workers’ personal space will be perceived as 
not only unsafe but also unpleasant. In particular, if 
activity spaces are threatened while they are performing 
construction activities, they will lose comfort and sense 
of safety. Some may even feel disrupted and demotivated 
because the impact of autonomous navigation behaviors 
on workers varies depending on the context. For example, 
workers will perceive smaller personal space for those 
who are just walking compared to those walking during 
task operations (e.g., transporting materials from one 
place to another). Similarly, workers will perceive a 
larger personal space for those in a safety-critical 
situation than those in less dangerous situations. 

Thus, to avoid interrupting the activities and 
decreasing productivity in construction, it is critical for 
robots to understand the status of workers and maintain a 
corresponding separation distance from the workers. In 
other words, while the primary personal space needs to 
be respected in the construction domain, it is also 
essential to preserve context-specific activity spaces in 
certain work-related situations.  

To this end, construction mobile robots should 
understand these contextual proxemic considerations and 
constraints safely and effectively navigate the 
construction site where robots encounter various workers 
and work situations. The detailed proxemic 
considerations are further discussed in Section 3.1.  

2.2 Socially-aware Navigation Algorithms 
Socially-aware navigation refers to the strategy in 

robot motion planning which accounts for social norms 
and conventions regarding space management [8]. It is 
based on the belief that humans interact with robots 
similarly to human-human interaction; thus, robots can 
learn from the social norms observed by humans to 
acquire more acceptable social behaviors and interactions 
with humans [18]. Socially compliant robots have the 
ability to perceive and understand crowd behavior to plan 
their future trajectory to reach their target destination 
while maintaining an appropriate distance from other 
pedestrians [7].  

There are two approaches in the socially aware 
navigation literature. A first approach is a model-based 
approach, which describes the spatial behaviors in terms 
of a set of rules (e.g., distance, velocity, acceleration, 
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direction) [19]. Using hand-crafted functions to ensure 
collision avoidance, it performed well in an austere 
environment; however, it did not generalize well and 
lacked the capacity to adapt to various situations and lead 
to oscillatory paths.  

To address these limitations, recent works have 
focused on learning-based approaches such as deep 
reinforcement learning [11] and imitation learning [20].
In the Inverse Reinforcement Learning (IRL), or 
imitation learning framework, agents can learn the 
underlying reward function from human demonstrations. 
Deep reinforcement learning (DRL) methods such as 
Deep Q-Network (DQN), Double DQN (DDQN), Trust 
Region Policy Optimization (TRPO), and Proximal 
Policy Optimization (PPO), can learn how to behave by 
interacting with an environment through a sequence of 
observation, actions, and rewards. Recent work in robot 
navigation research, DQN, and TPPO showed state-of-
the-art performances [21]. To this end, this study 
leverages the state-of-the-art RL algorithms, namely 
DQN and TRPO, to develop CASN social navigation
model that accounts for various contextual proxemic 
needs. 

3 Methodology 

3.1 Context-appropriate Social Navigation
The social space is highly relevant to the context. 

Construction workers keep a shared convention of 
construction workspace in construction sites when they 
interact/work with other workers, and the relevant social 
space is determined by the activity or task a worker is 
taking. Thus, the robot's spatial movement should reflect 
the construction work context to select the appropriate 
proxemic requirement for different pedestrian workers. 
This study defined three levels of proxemic 
considerations and assigned low, medium, and high 
proxemic requirements for different worker types, as 
illustrated in Figure 2. 

The low proxemic requirement includes normal 
pedestrian workers who are not conducting construction 
activities; thus, they are the most flexible in their spatial 
movement. The medium proxemic requirement group 
includes load-carrying pedestrian workers. Because these 
workers have some physical constraints due to their 
material, they require a larger space than the regular 
group. Lastly, the high proxemic requirement groups are 
those who are actively conducting construction activities. 
Intruding their activity spaces will lead to inefficiency. 
Thus, priority was placed on this group with the most 
significant space. 

Based on the principles of proxemic theory, we 
created the corresponding work zone as concentric 
boundaries and assigned three levels of work zone radius 

based on the pedestrian worker type. The small work 
zone indicates that there are less safety risks and activity 
disturbance compared to the large work zone. We define 
the work zone distances specific to the work status as 

, , for normal pedestrian, load-carrying 
pedestrian, and operational activity groups, respectively.

Table 1 Work Zone

Pedestrian Worker Type Work Zone Size
Normal Pedestrian Small 0.2

Load-carrying Pedestrian Medium 0.3
In-Activity Large 0.4

(a) normal-walking, (b) material-carrying walking, and 
(c) construction activity 

Figure 2. Examples of Different Work Zone
based on the Working Status

Acknowledging the need for different workers, this 
study aims to incorporate these different proxemic 
considerations into social navigation models. We 
leveraged DQN and TRPO as the base algorithms of the 
proposed model. Within the RL framework, we 
formulated this problem as a sequential problem that the 
robot agent interacts with the environment, observes the 
states of other humans, and makes a sequence of
decisions to maximize the expected return.

DQN is a value-based DRL method that solves the 
problem by approximating the optimal value function. 
The optimal policy is to maximize the expected return. It 
leverages experience replay which stores past 
experiences and randomly use a subset of them to update 
the Q-network. 

TPPO, on the other hand, is a policy-based DRL 
method which becomes very powerful in recent DRL 
research [22]. Formulating as a hard constraint problem, 
it aims to maximize the objective function, J(θ), subject 
to trust-region constraint, which enforces the distance 
between old and new policies measured by KL-
divergence to be small enough with guaranteed 
monotonic improvement.  
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In our model, the radius of the robot is , and the 

radius of the human be . The center to center distance 
between robot and human is defined as . Then, the 
minimum separation distance between robot and human, 

, is given by 

 

To provide feedback to the robot to learn the desired 
navigation behaviors, the reward function,  at timestep 
t, at state , and after action  are defined in such a way 
that the overall navigation goal was fulfilled by achieving 
a balanced outcome for both success rate and securing the 
corresponding minimum distance. It implemented 
different reward functions for different worker groups 
with corresponding values of work zone spaces based on 
the operational status. This was designed to be enforced 
greatly when violating the work zones of worker groups 
compared to those in regular conditions. 

We tried different reward factors for the new reward 
function, and each reward function calculation is done in 
the following sequence. 

 

In addition to negative rewards for collision, we 
added another set of penalties for invading the assigned 
personal space for each group. The penalty factor , is 
defined for intruding the work zone. This ensures better 
integrity of the algorithm in the sense that those who are 
working and situated in safety-critical environments are 
given higher priority over regular workers.   

3.2 Simulation Environment  
Because training robots in actual physical 

environments can be expensive and dangerous, much RL 
research is done in simulation environments and transfer 
the learning outcome to the physical environment. In our 
study, all experiments were carried out using a 2D 
navigation simulation environment, RVO2 [23]. RVO2 
simulates human movements by Optimal Reciprocal 
Collision Avoidance (ORCA) policy [24]. ORCA uses 
the optimal reciprocal assumption to generate a path in a 
shared space while avoiding other agents and preventing 
collisions with the local observation of the environment, 
as illustrated in Figure 1.   

 
Figure 1. Simulation Environment w/ Reciprocal 
Collision Avoidance 

Our simulation environment is composed of n human 
and a robot, and the robot task is to navigate toward a 
given goal in a crowd setting of n pedestrian workers. We 
assumed that humans could avoid collision with other 
humans based on ORCA. However, we assumed that 
humans do not change their paths based on the robot.  

The robot, on the other hand, observes the states of 
the environment, {distance to the goal position}, and 
adapts its actions to avoid collisions. The robot action 
space is given {direction, velocity}. It was assumed that 
the robot knows the goal position, and it can identify the 
category that a human belongs to in real-time with the 
vision data it obtains through navigation. The reward 
function is defined by {Reaching Goal Reward, Collision 
Reward}.  

When the minimum separation distance between 
robot and human is smaller than the radius value, it would 
be considered a collision. 

The episode will terminate when it reaches the goal 
in the duration of 25 secs or fails the task by colliding 
with people or by timeout. 

3.3 Experiment   
We incorporated the proposed CASN model into 

DQN and TRPO, and compared them with baseline 
models. We implemented the ORCA and Socially 
Attentive Reinforcement Learning (SARL) algorithm as 
the baseline models. SARL [25] also adopts DQN with 
an attentive pooling mechanism to learn the importance 
of neighboring humans with respect to their future 
trajectories. As it considers various factors like speed and 
directions of humans as opposed to the previous work 
assuming the closest neighbors had the most crucial 
effect on the robot, it improved the performance (e.g., 
time efficiency) compared to other state-of-the-art 
benchmark models. These models are used to delineate 
how the robot would behave without the knowledge of 
different proxemic considerations.  

In addition, we experimented with these algorithms in 
various density environments. Because robots would 
encounter a varying density of dynamic obstacles and 
crowds while moving through the construction sites (e.g., 
a narrow corridor and/or open space), it is imperative to 
explore how the density of the crowd would influence the 
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performance of our model. Thus, we compared the results 
of our models in the same environment with different 
densities: robot navigating among five people versus ten 
people to understand how each algorithm would perform 
differently in various density environments. 

For the experiments, we implemented the algorithms 
in PyTorch. Adopting from the framework of [26] in each 
set of training experiment, 10,000 training episodes were 
run with a batch size of 100. We used the learning rate of 
0.001 and the discount factor of 0.9. We adopted the ε-
greedy policy, where the exploration rate decays linearly 
from 0.5 to 0.1 in the first 5000 episodes and stays 0.1 for 
the remaining 5000 episodes.

3.4 Evaluation
As it is challenging to quantify the social conformity 

of robot behaviors, we used the following five evaluation 
metrics: success rate, collision rate, navigation duration 
time, violation of social space, and the minimum distance 
between human and robot while violation to evaluate 
social behaviors of the navigation algorithms. Firstly, the 
success rate is defined as the rate of the robot reaching 
the target goal within a time limit of 25 seconds, and it is 
considered as a failure when the robot collides with 
humans or the total navigation time is over 25 seconds. 
The collision rate is defined as the rate of robots colliding 
with humans, which means that the distance between the 
robot and a human is zero. Violation of social space is 
defined as the rate at which the minimum distance 
between the robot and a human is less than the designated 
work zone size. The minimum distance during violation 
is defined as the distance between the robot and a human 
when the robot intruded on the work zone of different 
workers. We assumed that a larger minimum distance 
during violation is more socially acceptable.

4 Results
This section compared our context-appropriate social 

navigation model against the baseline model and showed 
significant improvements in terms of social conformity. 
We also describe the performances of proposed models –
DQN and TRPO in different density scenarios: high and 
low density of pedestrian workers. 

4.1 Low Density
Our preliminary results showed that the context-

appropriate navigation algorithms successfully learned 
the social norms relative to different workers’ proxemic 
requirements in the low-density simulation environment. 
Figure 1 show the cumulative discounted rewards of the 
robot with respect to the number of episodes.

Figure 2. Cumulative discounted rewards for 5 
human density

The summarized result is described in Table 2. Except
for the ORCA baseline model, most algorithms 
successfully learned to navigate to the target position. 
The DQN baseline model showed a relatively similar 
total navigation duration time. However, in terms of 
social norm compliance, it suffered from a higher rate of 
personal space violations and the shorter minimum 
separation distance during the violation. On the other 
hand, our CASN models could maintain proper distance 
for different worker groups, ensuring their physical and 
psychological safety. It also showed increased minimum 
distance in case of violation.  

In comparing different RL algorithms, the policy 
gradient algorithm TRPO did not significantly 
outperform the SARL algorithm in the low-density 
setting. We observed that all algorithms that we 
experimented with did not have significant differences in 
outcomes regarding the success rate, the total navigation 
time, and frequency of the violation.

Table 2 Comparison of Context-Appropriate Social Navigation model in low density environment 

Model Avg. 
Duration

(s)

Success
Rate

(Suc no / 
Total no)

Collision
Rate 

(Col no / 
Total no)

Frequency of Violation
(Violation no. / Total no.)

Avg. Distance during 
Violation

Small Medium Large Small Medium Large

ORCA 10.86 0.43 0.57 0.09 0.17 0.10 0.08 0.12 0.17
  DQN 10.67 1 0 0.01 0.02 0.03 0.15 0.24 0.34

CASN-DQN 10.55 1 0 0.01 0.01 0.01 0.17 0.25 0.36
CASN-TRPO 10.75 1 0 0.01 0.01 0.01 0.17 0.27 0.38
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4.2 High-Density
Similar to those in the low-density scenarios, the

preliminary results in the high-density simulation 
environment also showed that the context-appropriate 
navigation algorithms successfully learned the social 
norms relative to different workers’ proxemic 
requirements.  However, the overall performance of the 
CASN models in the high-density environment slightly
decreased in terms of total navigation duration, frequency 
of violation, and the average separation distance during
the violation. They tend to converge slowly compared to 
those in the low-density environment, as illustrated in 
Figure 2. This tendency of decreased performance was 
most apparent in the baseline models. They suffered from 
a higher number of failures and violations, demonstrating 
the lack of the capacity to handle such high-density 
situations.

In comparing different RL algorithms, the policy 
gradient algorithm TRPO outperformed the SARL 
algorithm in the crowded environment setting, as 

summarized in Table 3. It reduced the total navigation 
duration. However, these models were not able to 
maintain the proper distance from the group with a large 
personal space requirement.

Figure 2. Cumulative discounted rewards for 10 
human density

Table 3 Comparison of Context-Appropriate Social Navigation model in high density environment 

Model Avg. 
Duration

(s)

Success 
Rate

(Suc no / 
Total no)

Collision 
Rate 

(Col no / 
Total no)

Frequency of Violation
(Violation no. / Total no.)

Avg. Distance during 
Violation

Small Medium Large Small Medium Large

ORCA 12.49 0.21 0.79 0.10 0.14 0.26 0.07 0.13 0.17
  DQN 13.25 0.67 0.24 0.07 0.11 0.20 0.13 0.24 0.33

CASN-DQN 12.89 1  0 0.01 0.01 0.02 0.14 0.25 0.35
CASN-TRPO 12.51 1 0 0.01 0.01 0.02 0.15 0.25 0.36

5 Discussion 
Our results demonstrated the potentials of the 

context-appropriate navigation model in making the 
robot aware of and responsive to varying types of
pedestrian workers. Regardless of the RL algorithms, 
both value-based and policy-based methods showed 
acceptable outcomes. On the contrary, the baseline 
models without the proxemic considerations were not
able to conform to the varied proxemic requirements, 
especially for the activity group with large personal space 
requirement. This suggests that social navigation 
algorithms without taking consideration of different 
proximity requirements would cause discomfort 
particularly to those who are in the most significant need 
of social norm conformity and in the most serious safety 
risks. 

Although context-appropriate navigation model 
accounting for proxemics performed well in low to 
moderate density environments, the performance tends to 
degrade as the density of the human increase. It showed 

underperformance in highly dense environments, causing 
the violation of social spaces and reduced minimum 
separation distance. This finding is similar to the 
prevalent limitation of the existing socially-aware 
navigation models [11]. Trautman et al. [27] showed that 
it is difficult to avoid freezing robot problem, which 
refers to a situation where robot halts or oscillates and 
results in either in a collision or no progress toward the 
goal, beyond a certain density environment. This finding 
implies that it will be even more challenging to learn and 
adhere to the different proxemic needs of workers in 
situations where workers and moving equipment are 
densely populated although the consequences of 
violation in highly dense areas can be more severe and 
dangerous. These results imply that the current proxemic-
based reactive planner may not be effective or safe in the 
high-density situations. Instead, an interactive and 
cooperative planner which understands and incorporates 
context-specific rules or human preferences can be more 
effective and can enable effective maneuvers for fluent
human-robot co-navigation. 
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6 Conclusion 
For mobile robots to be safely and efficiently 

deployed in construction environments, they should be 
endowed with a certain level of social intelligence to 
avoid the risk of collisions as well as interruption of 
construction activities. Our work defined proxemic 
characteristics relative to work context and incorporated 
such proxemic requirements into the existing social 
navigation algorithms so that robots can adapt to the 
context. We compared the performance of our CASN 
models against the baseline models. Our preliminary 
study results showed that the current RL-based socially 
navigation models can handle low to medium density 
environments, but they struggled in a high-density 
environment. This indicates that proxemic-based social 
navigation algorithms have limitations in the high-
density environment, and it is imperative to develop 
advanced and intricate human-robot interactions to 
handle such cases. Implicit or explicit human-robot 
interface can be incorporated to allow robots to more 
efficiently learn the social norm from human preferences. 
These findings will help develop and implement mobile 
robots with social intelligence capable of understanding 
the workplace context and taking socially and 
contextually appropriate behaviors accordingly in the 
construction domain. Such incorporation of the social 
norm will ensure the psychological and physical safety of 
workers and support successful integration of mobile 
robots in the construction sites. 

The limitation of our model is that they were 
performed in a simple simulation environment. It only 
considers the pedestrian workers, excluding static 
workers and obstacles. Our model, thereby, may not 
work well in the real-world environment, which tends to 
be much complicated. Thus, in future work, we will 
include both stationary and moving obstacles in addition 
to different geometric spatial layouts to better represent 
the characteristics of the real world, and in turn, improve 
the performance for real-world implementation. Another 
limitation of our work is that the robot does not infer the 
social space of the encountering pedestrian workers. 
Instead, the predetermined values of proxemic 
requirement were provided to the robot.  However, it is 
unlikely that this value will be fixed or that this 
knowledge will be provided to robots in real-world 
scenarios. In our future study, we will make the robot 
agent capable of inferring the dynamic social space of 
different workers without explicitly informing them by 
leveraging vision data collected from robot sensors.   
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